

CENTRE NUMBER

INDEX NUMBER

ADDITIONAL MATHEMATICS

Paper 1
For examination from 2021

SPECIMEN PAPER

2 hours 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, index number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE ON ANY BARCODES.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 90 .

This document consists of 17 printed pages and $\mathbf{1}$ blank page.

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 The line $\frac{x}{a}+\frac{y}{b}=1$, where a and b are positive constants, intersects the x-axis at S and the y-axis at T. Given that the gradient of $S T$ is $-\frac{1}{3}$ and that the distance $S T=\sqrt{40}$, find the value of a and of b.

2 The equation of a curve is $y=3-4 \sin 2 x$.
(a) State the minimum and maximum values of y.
(b) Sketch the graph of $y=3-4 \sin 2 x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

3 (a) Find the first 3 terms in the expansion, in ascending powers of x, of $\left(2-\frac{x}{4}\right)^{6}$. Give the terms in their simplest form.
(b) Hence find the term independent of x in the expansion of $\left(2-\frac{x}{4}\right)^{6}\left(\frac{3}{x}-x\right)^{2}$.

4 The function f is defined by $\mathrm{f}(x)=\frac{x^{2}-4}{x^{2}+6}, x>0$.
(a) Explain, with working, whether f is an increasing or a decreasing function.
(b) A point P moves along the curve $y=\mathrm{f}(x)$ in such a way that the y-coordinate of P is increasing at a rate of 0.05 units per second. Find the rate of increase of the x-coordinate of P when $x=2$.

5 On a certain date, 160 cases of influenza were recorded in a city. This number increased with time and after t days the number of recorded cases was N. It is believed that N can be modelled by the formula $N=160 \mathrm{e}^{k t}$. The number of cases recorded after 5 days was 245 .
(a) Estimate the number of cases recorded after 7 days.

Influenza is declared an epidemic when the number of cases reaches 400 .
(b) Estimate after how many days influenza is declared an epidemic.

6 For a particular curve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=3 \cos x-4 \sin 2 x$. The curve passes through the point $P\left(\frac{\pi}{2}, 9\right)$ and the gradient of the curve at P is 5 . Find the equation of the curve.

7 (a) Express each of $2 x^{2}-4 x+5$ and $-x^{2}-4 x-2$ in the form $a(x+b)^{2}+c$, where a, b and c are constants.
(b) Use your answers from part (a) to explain why the curves with equations $y=2 x^{2}-4 x+5$ and $y=-x^{2}-4 x-2$ will not intersect.

8 Without using a calculator,
(a) show that $\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
[2]
(b) express $\sec ^{2} 75^{\circ}$ in the form $a+b \sqrt{3}$, where a and b are integers.

The diagram shows a triangular plot of ground, $A B C$, in which $A B=12 \mathrm{~m}, A C=16 \mathrm{~m}$ and angle $B A C=90^{\circ}$. A gardener considers using a rectangular part, $A P Q R$, of the triangle, where P, Q and R lie on $A B, B C$ and $A C$ respectively, for growing vegetables.
(a) Given that the length of $A R$ is $x \mathrm{~m}$ and the length of $A P$ is $y \mathrm{~m}$, show that $y=12-\frac{3 x}{4}$.
(b) Given that x can vary, find the largest possible area of the vegetable plot.

10 The expression $2 x^{3}-x^{2}+a x+b$, where a and b are constants, has a factor of $x-2$ and leaves a remainder of 12 when divided by $x+2$.
(a) Find the value of a and of b.
(b) Using these values of a and b, solve the equation $2 x^{3}-x^{2}+a x+b=0$.

In the diagram, A, B, C, D and E lie on a circle such that $A B=B C$ and $B A$ is parallel to $C E$. The tangent to the circle at A meets $C E$ produced at T. Angle $T A E=\theta$.
(a) Show that $C A$ bisects angle $B C E$.
(b) Show that angle $C D E=3 \theta$.

12 (a) Prove the identity $(\operatorname{cosec} x-\cot x)(\sec x+1)=\tan x$.
(b) Hence solve the equation $(\operatorname{cosec} x-\cot x)(\sec x+1)=4 \cot x$ for $0^{\circ}<x<180^{\circ}$.
(c) Show that there are no solutions to the equation $(\operatorname{cosec} x-\cot x)(\sec x+1)=\tan 2 x$ for $0^{\circ}<x<180^{\circ}$.

13 In a race, a cyclist passes a point A at the top of a hill with a speed of $5 \mathrm{~m} / \mathrm{s}$. He then increases his speed and passes the finishing post $B, 10$ seconds later, with a speed of $20 \mathrm{~m} / \mathrm{s}$. Between A to B, his velocity, $v \mathrm{~m} / \mathrm{s}$, is given by $v=0.1 t^{2}+p t+q$, where t is the time in seconds from passing A, and p and q are constants.
(a) Show that $q=5$ and find the value of p.
(b) Find the acceleration of the cyclist when his speed is $11.6 \mathrm{~m} / \mathrm{s}$.
(c) Find the distance $A B$.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

