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1. ALGEBRA

Quadratic Equation
 For the equation ax2 + bx + c = 0,
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2. TRIGONOMETRY

Identities

sin2 A + cos2 A = 1

sec2 A = 1 + tan2 A

cosec2 A = 1 + cot2 A

sin(A ± B) = sin A cos B ± cos A sin B

cos(A ± B) = cos A cos B ∓ sin A sin B

tan(A ± B) = tan tan
tan tan

A B
A B

1 "
!

sin 2A = 2 sin A cos A

cos 2A = cos2 A – sin2 A = 2 cos2 A – 1 = 1 – 2 sin2 A

tan 2A = 
tan
tan

A
A

1
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Formulae for ∆ABC

 sin sin sinA
a

B
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a2 = b2 + c2 – 2bc cos A

∆ = 2
1  bc sin A
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1 The line   a
x

b
y

+  = 1 , where a and b are positive constants, intersects the x-axis at S and the y-axis at T.  

 Given that the gradient of ST is 3
1−  and that the distance   ST = 40  , find the value of a and of b. [5]
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2 The equation of a curve is   y = 3 – 4 sin 2x .

 (a) State the minimum and maximum values of y. [2]

 (b) Sketch the graph of   y = 3 – 4 sin 2x   for   0° ⩽ x ⩽ 360°. [3]
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3 (a) Find the first 3 terms in the expansion, in ascending powers of x, of   x2 4

6

−d n  .   Give the terms in their 

  simplest form. [3]

 (b) Hence find the term independent of x in the expansion of   x
x x2 4
36 2

− −d dn n .  [3]
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4 The function f is defined by   f(x) = 
x
x

6
4

2

2 −
+

, x > 0 .

 (a) Explain, with working, whether f is an increasing or a decreasing function. [4] 

 
 (b) A point P moves along the curve   y = f(x)   in such a way that the y-coordinate of P is increasing at a 

rate of 0.05 units per second. Find the rate of increase of the x-coordinate of P when x = 2. [2]
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5 On a certain date, 160 cases of influenza were recorded in a city. This number increased with time and after 
t days the number of recorded cases was N. It is believed that N can be modelled by the formula   N = 160ekt. 
The number of cases recorded after 5 days was 245. 

 (a) Estimate the number of cases recorded after 7 days. [4]

 
 Influenza is declared an epidemic when the number of cases reaches 400.

 (b) Estimate after how many days influenza is declared an epidemic. [2]
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6 For a particular curve   
d
d

x
y
2

2

 = 3 cos x – 4 sin 2x . The curve passes through the point   ,P 2 9r
d n   and the gradient 

 of the curve at P is 5. Find the equation of the curve. [6]
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7 (a) Express each of   2x2 – 4x + 5   and   –x2 – 4x – 2   in the form a(x + b)2 + c , where a, b and c are 
constants. [4]

 (b) Use your answers from part (a) to explain why the curves with equations   y = 2x2 – 4x + 5   and   
y = –x2 – 4x – 2   will not intersect. [3]
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8 Without using a calculator,

 (a) show that   cos 75° = 
2 2
3 1−

. [2]

 (b) express  sec2 75°   in the form   a + b 3  , where a and b are integers. [5]
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9 
B

P

A R C 

Q

y m

x m

 The diagram shows a triangular plot of ground, ABC, in which AB = 12 m, AC = 16 m and angle BAC = 90°. 
A gardener considers using a rectangular part, APQR, of the triangle, where P, Q and R lie on AB, BC and 
AC respectively, for growing vegetables.

 (a) Given that the length of AR is x m and the length of AP is y m, show that   y = 12 – x
4
3 .   [3]

 (b) Given that x can vary, find the largest possible area of the vegetable plot.  [4]
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10 The expression   2x3 – x2 + ax + b , where a and b are constants, has a factor of x – 2 and leaves a remainder 
of 12 when divided by x + 2. 

 (a) Find the value of a and of b.  [4]

 (b) Using these values of a and b, solve the equation   2x3 – x2 + ax + b = 0 . [4]
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11 
C 

B

A
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 In the diagram, A, B, C, D and E lie on a circle such that AB = BC and BA is parallel to CE. The tangent to 
the circle at A meets CE produced at T. Angle TAE = θ.

 (a) Show that CA bisects angle BCE. [3]

 (b) Show that angle CDE = 3θ. [5]
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12 (a) Prove the identity   (cosec x – cot x)(sec x + 1) = tan x. [4]
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 (b) Hence solve the equation   (cosec x – cot x)(sec x + 1) = 4 cot x   for   0° < x < 180° . [3]

 (c) Show that there are no solutions to the equation   (cosec x – cot x)(sec x + 1) = tan 2x
for   0° < x < 180° . [2]
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13 In a race, a cyclist passes a point A at the top of a hill with a speed of 5 m/s. He then increases his speed and 
passes the finishing post B, 10 seconds later, with a speed of 20 m/s. Between A to B, his velocity, v m/s, is 
given by   v = 0.1t 2 + pt + q , where t is the time in seconds from passing A, and p and q are constants.

 (a) Show that   q = 5   and find the value of p. [3]

 (b) Find the acceleration of the cyclist when his speed is 11.6 m/s. [4]
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 (c) Find the distance AB. [3]
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