MATHEMATICS SYLLABUS T
GCE NORMAL (TECHNICAL) LEVEL (2017)
(Syllabus 4046)

CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>AIMS</td>
<td>2</td>
</tr>
<tr>
<td>ASSESSMENT OBJECTIVES</td>
<td>2</td>
</tr>
<tr>
<td>SCHEME OF ASSESSMENT</td>
<td>3</td>
</tr>
<tr>
<td>USE OF CALCULATORS</td>
<td>4</td>
</tr>
<tr>
<td>SUBJECT CONTENT</td>
<td>4</td>
</tr>
<tr>
<td>MATHEMATICAL FORMULAE</td>
<td>8</td>
</tr>
<tr>
<td>MATHEMATICAL NOTATION</td>
<td>9</td>
</tr>
</tbody>
</table>
INTRODUCTION

The syllabus is intended to provide students with the fundamental mathematical knowledge and skills to prepare them for technical- or service-oriented education. The syllabus consists of three content strands, namely, Number and Algebra, Geometry and Measurement, and Statistics and Probability, and a context strand called Real-World Contexts. Application of mathematics is an important emphasis of the content strands. The approach to teaching should involve meaningful contexts so that students can see and appreciate the relevance and application of mathematics in their daily life and the world around them. Real-world contexts are realistic contexts that naturally have practical applications of mathematics, and the mathematics can come from any part of the ‘Content’.

AIMS

The N(T) Level Mathematics Syllabus aims to enable all students who are bound for post-secondary vocational education to:

- acquire mathematical concepts and skills for real life, to support learning in other subjects and to prepare for vocational education
- develop thinking, reasoning, communication, application and metacognitive skills through a mathematical approach to problem-solving
- build confidence in using mathematics and appreciate its value in making informed decisions in real life.

ASSESSMENT OBJECTIVES

The assessment will test candidates’ abilities to:

AO1 understand and apply mathematical concepts and skills in a variety of contexts
AO2 organise and analyse data and information; formulate problems into mathematical terms and select and apply appropriate techniques of solution
AO3 apply mathematics in real-world contexts; interpret mathematical results and make inferences.
SCHEME OF ASSESSMENT

<table>
<thead>
<tr>
<th>Paper</th>
<th>Duration</th>
<th>Description</th>
<th>Marks</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1</td>
<td>1 hour 30 minutes</td>
<td>There will be 11–13 short questions carrying 2–4 marks, largely free from context, testing more on fundamental concepts and skills, followed by 2 longer questions carrying 6–8 marks, developed around a context. Candidates are required to answer all questions which will cover topics from the following strands • Number and Algebra • Geometry and Measurement • Real-World Contexts related to Number and Algebra and Geometry and Measurement</td>
<td>50</td>
<td>50%</td>
</tr>
<tr>
<td>Paper 2</td>
<td>1 hour 30 minutes</td>
<td>There will be 11–13 short questions carrying 2–4 marks, largely free from context, testing more on fundamental concepts and skills, followed by 2 longer questions carrying 6–8 marks, developed around a context. Candidates are required to answer all questions which will cover topics from the following strands • Number and Algebra • Statistics and Probability • Real-World Contexts related to Number and Algebra and Statistics and Probability</td>
<td>50</td>
<td>50%</td>
</tr>
</tbody>
</table>

NOTES

1. Omission of essential working will result in loss of marks.

2. Relevant mathematical formulae will be provided for candidates.

3. Candidates should also have geometrical instruments with them for Paper 1.

4. Unless stated otherwise within a question, three-figure accuracy will be required for answers. This means that four-figure accuracy should be shown throughout the working, including cases where answers are used in subsequent parts of the question. Premature approximation will be penalised, where appropriate. Angles in degrees should be given to one decimal place.

5. SI units will be used in questions involving mass and measures. Both the 12-hour and 24-hour clock may be used for quoting times of the day. In the 24-hour clock, for example, 3.15 a.m. will be denoted by 03 15; 3.15 p.m. by 15 15.

6. Candidates are expected to be familiar with the solidus notation for the expression of compound units, e.g. 5 cm/s for 5 centimetres per second, 13.6 g/cm3 for 13.6 grams per cubic centimetre.

7. Unless the question requires the answer in terms of π, the calculator value for π or π = 3.142 should be used.

8. Spaces will be provided in each question paper for working and answers.
USE OF CALCULATORS

An approved calculator may be used in both Paper 1 and Paper 2.

SUBJECT CONTENT

<table>
<thead>
<tr>
<th>Topic/Sub-topics</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER AND ALGEBRA</td>
<td></td>
</tr>
</tbody>
</table>
| **N1** Numbers and their operations | negative numbers and primes (exclude prime factorisation)
integers and their four operations
four operations on fractions and decimals (including negative fractions and decimals)
calculations with calculator, including squares, cubes, square roots and cube roots
representation and ordering of numbers on the number line
use of $<$, $>$, \leq, \geq
rounding off numbers to a required number of decimal places or significant figures
estimating the results of computation
use of index notation for integer powers
use of standard form $A \times 10^n$, where n is an integer, and $1 \leq A < 10$ |
| **N2** Ratio and proportion | comparison between two or more quantities by ratio
dividing a quantity in a given ratio
ratios involving fractions and decimals
equivalent ratios
writing a ratio in its simplest form
map scales (distance and area)
direct and inverse proportion |
| **N3** Percentage | expressing percentage as a fraction or decimal
finding the whole given a percentage part
expressing one quantity as a percentage of another
comparing two quantities by percentage
percentages greater than 100%
finding one quantity given the percentage and the other quantity
increasing/decreasing a quantity by a given percentage
finding percentage increase/decrease |
| **N4** Rate and speed | rates and average rates (including the concepts of speed and average speed)
conversion of units (e.g. km/h to m/s) |
<table>
<thead>
<tr>
<th>Topic/Sub-topics</th>
<th>Content</th>
</tr>
</thead>
</table>
| **N5** Algebraic expressions and formulae | • using letters to represent numbers
• interpreting notations:
 * ab as $a \times b$
 * $\frac{a}{b}$ as $a \div b$ or $a \times \frac{1}{b}$
 * a^2 as $a \times a$, a^3 as $a \times a \times a$, a^2b as $a \times a \times b$, …
 * $3y$ as $y + y + y$ or $3 \times y$
 * $\frac{3+y}{5}$ as $(3 + y) \div 5$ or $\frac{1}{5} \times (3 + y)$
• evaluation of algebraic expressions and formulae
• translation of simple real-world situations into algebraic expressions
• recognising and representing number patterns (including finding an algebraic expression for the nth term for simple cases such as $n + 3$, $2n + 1$)
• addition and subtraction of linear expressions
• simplification of linear expressions, such as:
 $$-2(3x - 5) + 4x$$
 $$\frac{2x}{3} \times \frac{3(x - 5)}{2}$$
• expansion of the product of two linear expressions
• multiplication and division of simple algebraic fractions, such as:
 $$\frac{3a}{4b^2} \times \frac{5ab}{3}$$
 $$\frac{3a}{4} \div \frac{9a^2}{10}$$
• changing the subject of a simple formula
• finding the value of an unknown quantity in a given formula
• factorisation of linear expressions of the form $ax + by$
• factorisation of quadratic expressions of the form $x^2 + px + q$
Exclude:
• use of
 * $(a \pm b)^2 = a^2 \pm 2ab + b^2$
 * $a^2 - b^2 = (a + b)(a - b)$
• addition and subtraction of algebraic fractions such as $\frac{1}{x} + \frac{1}{x-1}$ |
| **N6** Functions and graphs | • Cartesian coordinates in two dimensions
• graph of a set of ordered pairs as a representation of a relationship between two variables
• linear functions ($y = ax + b$) and quadratic functions ($y = ax^2 + bx + c$)
• graphs of linear functions
• the gradient of a linear graph as the ratio of the vertical change to the horizontal change (positive and negative gradients)
• graphs of quadratic functions and their properties
 * positive or negative coefficient of x^2
 * maximum and minimum points
 * symmetry |
N7 Solutions of equations
- solving linear equations in one variable
- solving simple fractional equations that can be reduced to linear equations, such as:
 - \(\frac{x}{3} + \frac{x-2}{4} = 3 \)
 - \(\frac{3}{x-2} = 6 \)
- graphs of linear equations in two variables \((ax + by = c)\)
- solving simultaneous linear equations in two variables by:
 - substitution and elimination methods
 - graphical method
- solving quadratic equations in one variable by use of formula
- formulating a linear equation in one variable, a quadratic equation in one variable, or a pair of linear equations in two variables to solve problems

GEOMETRY AND MEASUREMENT

G1 Angles, triangles and polygons
- right, acute, obtuse and reflex angles
- vertically opposite angles, angles on a straight line and angles at a point
- angles formed by two parallel lines and a transversal: corresponding angles, alternate angles, interior angles
- properties of triangles and special quadrilaterals
- properties of perpendicular bisectors of line segments and angle bisectors
- construction of simple geometrical figures from given data (including perpendicular bisectors and angle bisectors) using compasses, ruler, set squares and protractor where appropriate

G2 Symmetry, congruence and similarity
- line and rotational symmetry of plane figures
- lines of symmetry
- order of rotational symmetry
- congruent and similar figures
- properties of similar triangles and quadrilaterals:
 - corresponding angles are equal
 - corresponding sides are proportional

G3 Pythagoras’ theorem and trigonometry
- use of Pythagoras’ theorem
- determining whether a triangle is right-angled given the lengths of three sides
- use of trigonometric ratios (sine, cosine and tangent) of acute angles to calculate unknown sides and angles in right-angled triangles (including problems involving angles of elevation and depression)

G4 Mensuration
- area of triangle as \(\frac{1}{2} \times \text{base} \times \text{height} \)
- area and circumference of circle
- area of parallelogram and trapezium
- problems involving perimeter and area of composite plane figures
- visualising and sketching cube, cuboid, prism, cylinder, pyramid, cone and sphere (including use of nets to visualise the surface area of these solids, where applicable)
- volume and surface area of cube, cuboid, prism, cylinder, pyramid, cone and sphere
- conversion between \(\text{cm}^2 \) and \(\text{m}^2 \), and between \(\text{cm}^3 \) and \(\text{m}^3 \)
- problems involving volume and surface area of composite solids
- arc length as fraction of the circumference and sector area as fraction of the area of a circle
<table>
<thead>
<tr>
<th>Topic/Sub-topics</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS AND PROBABILITY</td>
<td></td>
</tr>
<tr>
<td>S1 Data analysis</td>
<td>• analysis and interpretation of:</td>
</tr>
<tr>
<td></td>
<td>• tables</td>
</tr>
<tr>
<td></td>
<td>• bar graphs</td>
</tr>
<tr>
<td></td>
<td>• pictograms</td>
</tr>
<tr>
<td></td>
<td>• line graphs</td>
</tr>
<tr>
<td></td>
<td>• pie charts</td>
</tr>
<tr>
<td></td>
<td>• dot diagrams</td>
</tr>
<tr>
<td></td>
<td>• histograms with equal class intervals</td>
</tr>
<tr>
<td></td>
<td>• purposes and use, advantages and disadvantages of the different forms of statistical representations</td>
</tr>
<tr>
<td></td>
<td>• purposes and use of mean, mode and median</td>
</tr>
<tr>
<td></td>
<td>• calculation of the mean, mode and median for a set of ungrouped data</td>
</tr>
<tr>
<td></td>
<td>• percentiles, quartiles, range and interquartile range</td>
</tr>
<tr>
<td></td>
<td>• analysis and interpretation of cumulative frequency diagrams</td>
</tr>
<tr>
<td>S2 Probability</td>
<td>• probability as a measure of chance</td>
</tr>
<tr>
<td></td>
<td>• probability of single events (including listing all the possible outcomes in a simple chance situation to calculate the probability)</td>
</tr>
<tr>
<td>REAL-WORLD CONTEXTS</td>
<td></td>
</tr>
<tr>
<td>R1 Problems derived from real-world contexts</td>
<td>• real-world contexts such as:</td>
</tr>
<tr>
<td></td>
<td>• profit and loss (exclude use of the terms ‘percentage profit’ and ‘percentage loss’)</td>
</tr>
<tr>
<td></td>
<td>• simple interest and compound interest</td>
</tr>
<tr>
<td></td>
<td>• household finance (earnings, expenditures, budgeting, etc.)</td>
</tr>
<tr>
<td></td>
<td>• payment/subscription rates (hire-purchase, utilities bills, etc.)</td>
</tr>
<tr>
<td></td>
<td>• money exchange</td>
</tr>
<tr>
<td></td>
<td>• time schedules (including 24-hour clock) and time zone variation</td>
</tr>
<tr>
<td></td>
<td>• designs (models/structures, maps and plans, packaging, etc.)</td>
</tr>
<tr>
<td></td>
<td>• everyday statistics (sport/game statistics, household and market surveys, etc.)</td>
</tr>
<tr>
<td></td>
<td>• tasks involving:</td>
</tr>
<tr>
<td></td>
<td>• use of data from tables and charts</td>
</tr>
<tr>
<td></td>
<td>• interpretation and use of graphs in practical situations</td>
</tr>
<tr>
<td></td>
<td>• drawing graphs from given data</td>
</tr>
<tr>
<td></td>
<td>• creating geometrical patterns and designs</td>
</tr>
<tr>
<td></td>
<td>• interpretation and use of quantitative information</td>
</tr>
</tbody>
</table>
MATHEMATICAL FORMULAE

Note:
Below is the list of formulae for Paper 1. For Paper 2, only the section on Number and Algebra will be given.

Number and Algebra

Compound interest

\[\text{Total amount} = P \left(1 + \frac{r}{100}\right)^n \]

Quadratic equation \(ax^2 + bx + c = 0 \)

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Geometry and Measurement

Curved surface area of a cone = \(\pi rl \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a cone = \(\frac{1}{3} \pi r^2 h \)

Volume of a pyramid = \(\frac{1}{3} \times \text{base area} \times \text{height} \)

Volume of a sphere = \(\frac{4}{3} \pi r^3 \)
MATHEMATICAL NOTATION

The list which follows summarises the notation used in Cambridge’s Mathematics examinations. Although primarily directed towards A Level, the list also applies, where relevant, to examinations at all other levels.

1. Set Notation

\(\in\) is an element of

\(\notin\) is not an element of

\(\{x_1, x_2, \ldots\}\) the set with elements \(x_1, x_2, \ldots\)

\(\{x: \ldots\}\) the set of all \(x\) such that

\(n(A)\) the number of elements in set \(A\)

\(\emptyset\) the empty set

\(\mathbb{U}\) universal set

\(A'\) the complement of the set \(A\)

\(\mathbb{Z}\) the set of integers, \(\{0, \pm 1, \pm 2, \pm 3, \ldots\}\)

\(\mathbb{Z}^+\) the set of positive integers, \(\{1, 2, 3, \ldots\}\)

\(\mathbb{Q}\) the set of rational numbers

\(\mathbb{Q}^+\) the set of positive rational numbers, \(\{x \in \mathbb{Q}: x > 0\}\)

\(\mathbb{Q}_0^+\) the set of positive rational numbers and zero, \(\{x \in \mathbb{Q}: x \geq 0\}\)

\(\mathbb{R}\) the set of real numbers

\(\mathbb{R}^+\) the set of positive real numbers, \(\{x \in \mathbb{R}: x > 0\}\)

\(\mathbb{R}_0^+\) the set of positive real numbers and zero, \(\{x \in \mathbb{R}: x \geq 0\}\)

\(\mathbb{R}^n\) the real \(n\)-tuples

\(\mathbb{C}\) the set of complex numbers

\(\subseteq\) is a subset of

\(\subset\) is a proper subset of

\(\not\subset\) is not a subset of

\(\not\subset\) is not a proper subset of

\(\cup\) union

\(\cap\) intersection

\([a, b]\) the closed interval \(\{x \in \mathbb{R}: a \leq x \leq b\}\)

\([a, b)\) the interval \(\{x \in \mathbb{R}: a \leq x < b\}\)

\((a, b]\) the interval \(\{x \in \mathbb{R}: a < x \leq b\}\)

\((a, b)\) the open interval \(\{x \in \mathbb{R}: a < x < b\}\)
2. Miscellaneous Symbols

\[=\] is equal to
\[\neq\] is not equal to
\[\equiv\] is identical to or is congruent to
\[\approx\] is approximately equal to
\[\propto\] is proportional to
\[\lt\] is less than
\[\leq; \geq\] is less than or equal to; is not greater than
\[\gt\] is greater than
\[\geq; \leq\] is greater than or equal to; is not less than
\[\infty\] infinity

3. Operations

\[a + b\] \(a\) plus \(b\)
\[a - b\] \(a\) minus \(b\)
\[a \times b, ab, a \cdot b\] \(a\) multiplied by \(b\)
\[a \div b, \frac{a}{b}, a/b\] \(a\) divided by \(b\)
\[a : b\] the ratio of \(a\) to \(b\)
\[\sum_{i=1}^{n} a_i\] \(a_1 + a_2 + ... + a_n\)
\[\sqrt{a}\] the positive square root of the real number \(a\)
\[|a|\] the modulus of the real number \(a\)
\[n!\] \(n\) factorial for \(n \in \mathbb{Z}^+ \cup \{0\}, \ (0! = 1)\)
\[\binom{n}{r}\] the binomial coefficient \(\frac{n!}{r!(n-r)!}\), for \(n, r \in \mathbb{Z}^+ \cup \{0\}, \ 0 \leq r \leq n\)
\[\binom{n}{r} = \frac{n(n-1)...(n-r+1)}{r!}\], for \(n \in \mathbb{Q}, \ r \in \mathbb{Z}^+ \cup \{0\}\)
4. Functions

\(f \)
the function \(f \)

\(f(x) \)
the value of the function \(f \) at \(x \)

\(f: A \rightarrow B \)
\(f \) is a function under which each element of set \(A \) has an image in set \(B \)

\(f: x \rightarrow y \)
the function \(f \) maps the element \(x \) to the element \(y \)

\(f^{-1} \)
the inverse of the function \(f \)

\(g \circ f, gf \)
the composite function of \(f \) and \(g \) which is defined by \((g \circ f)(x) \) or \(gf(x) = g(f(x)) \)

\(\lim_{x \to a} f(x) \)
the limit of \(f(x) \) as \(x \) tends to \(a \)

\(\Delta x; \; \delta x \)
an increment of \(x \)

\(\frac{dy}{dx} \)
the derivative of \(y \) with respect to \(x \)

\(\frac{d^n y}{dx^n} \)
the \(n \)th derivative of \(y \) with respect to \(x \)

\(f'(x), f''(x), \ldots, f^{(n)}(x) \)
the first, second, \(\ldots \) \(n \)th derivatives of \(f(x) \) with respect to \(x \)

\(\int y \, dx \)
indefinite integral of \(y \) with respect to \(x \)

\(\int_a^b y \, dx \)
the definite integral of \(y \) with respect to \(x \) for values of \(x \) between \(a \) and \(b \)

\(\dot{x}, \ddot{x}, \ldots \)
the first, second, \(\ldots \) derivatives of \(x \) with respect to time

5. Exponential and Logarithmic Functions

\(e \)
base of natural logarithms

\(e^x, \exp x \)
exponential function of \(x \)

\(\log_a x \)
logarithm to the base \(a \) of \(x \)

\(\ln x \)
natural logarithm of \(x \)

\(\lg x \)
logarithm of \(x \) to base 10

6. Circular Functions and Relations

\(\sin, \cos, \tan, \cosec, \sec, \cot \)
the circular functions

\(\sin^{-1}, \cos^{-1}, \tan^{-1}, \cosec^{-1}, \sec^{-1}, \cot^{-1} \)
the inverse circular functions
7. Complex Numbers

\(i \) the square root of \(-1\)

\(z \) a complex number, \(z = x + iy \)
\[= r(\cos \theta + i \sin \theta), \ r \in \mathbb{R}_0^+ \]
\[= re^{i\theta}, \ r \in \mathbb{R}_0^+ \]

\(\text{Re } z \) the real part of \(z \), \(\text{Re } (x + iy) = x \)

\(\text{Im } z \) the imaginary part of \(z \), \(\text{Im } (x + iy) = y \)

\(|z| \) the modulus of \(z \), \(|x + iy| = \sqrt{x^2 + y^2}, \ r(\cos\theta + i \sin\theta) = r \)

\(\text{arg } z \) the argument of \(z \), \(\text{arg}(r(\cos\theta + i \sin\theta)) = \theta, \ -\pi < \theta \leq \pi \)

\(z^* \) the complex conjugate of \(z \), \((x + iy)^* = x - iy \)

8. Matrices

\(M \) a matrix \(M \)

\(M^{-1} \) the inverse of the square matrix \(M \)

\(M^T \) the transpose of the matrix \(M \)

\(\det M \) the determinant of the square matrix \(M \)

9. Vectors

\(\mathbf{a} \) the vector \(\mathbf{a} \)

\(\overrightarrow{AB} \) the vector represented in magnitude and direction by the directed line segment \(\overrightarrow{AB} \)

\(\hat{\mathbf{a}} \) a unit vector in the direction of the vector \(\mathbf{a} \)

\(\mathbf{i}, \mathbf{j}, \mathbf{k} \) unit vectors in the directions of the Cartesian coordinate axes

\(|\mathbf{a}| \) the magnitude of \(\mathbf{a} \)

\(|\overrightarrow{AB}| \) the magnitude of \(\overrightarrow{AB} \)

\(\mathbf{a} \cdot \mathbf{b} \) the scalar product of \(\mathbf{a} \) and \(\mathbf{b} \)

\(\mathbf{a} \times \mathbf{b} \) the vector product of \(\mathbf{a} \) and \(\mathbf{b} \)
10. Probability and Statistics

- Events: $A, B, C,$ etc.
- Union of events: $A \cup B$
- Intersection of events: $A \cap B$
- Probability of an event: $P(A)$
- Complement of an event: A'
- Probability of an event given another event: $P(A | B)$

- Random variables: $X, Y, R,$ etc.
- Value of random variables: $x, y, r,$ etc.
- Observations: $x_1, x_2,$ etc.
- Frequencies: $f_1, f_2,$ etc.

- Probability function: $P(X = x)$
- Values of probability function: $p_1, p_2,$ etc.
- Probability density function: $f(x), g(x)$
- Cumulative distribution function: $F(x), G(x)$
- Expectation: $E(X)$

- Discrete random variables:
 - Binomial distribution: $B(n, p)$
 - Poisson distribution: $Po(\mu)$

- Continuous random variables:
 - Normal distribution: $N(\mu, \sigma^2)$

- Parameters:
 - Population mean: μ
 - Population variance: σ^2
 - Population standard deviation: σ
 - Sample mean: \bar{x}

- Estimation:
 - Unbiased estimate of population variance: s^2
 - Standardised normal variable: ϕ
 - Corresponding cumulative distribution function: Φ
 - Linear product-moment correlation coefficient: ρ, r